UNIT III

Logic Concepts: Introduction, propositional calculus, proportional logic, natural deduction system, axiomatic system, semantic tableau system in proportional logic, resolution refutation in proportional logic, predicate logic

1.1. Propositional Logic Concepts:

- Logic is a study of principles used to
 - distinguish correct from incorrect reasoning.
- Formally it deals with
 - the notion of truth in an abstract sense and is concerned with the principles of valid inferencing.
- A proposition in logic is a declarative statements which are either true or false (but not both) in a given context. For example,
 - "Jack is a male",
 - "Jack loves Mary" etc.
- Given some propositions to be true in a given context,
 - logic helps in inferencing new proposition, which is also true in the same context.
- Suppose we are given a set of propositions such as
 - "It is hot today" and
 - "If it is hot it will rain", then
 - we can infer that

"It will rain today".

1.2. Well-formed formula

- Propositional Calculus (PC) is a language of propositions basically refers
 - to set of rules used to combine the propositions to form compound propositions using logical operators often called connectives such as Λ , V, \sim , \rightarrow , \leftrightarrow
- Well-formed formula is defined as:

- An atom is a well-formed formula.
- If α is a well-formed formula, then $\sim \alpha$ is a well-formed formula.
- If α and β are well formed formulae, then $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ are also well-formed formulae.
- A propositional expression is a well-formed formula if and only if it can be obtained by using above conditions.

1.3. Truth Table

- Truth table gives us operational definitions of important logical operators.
 - By using truth table, the truth values of well-formed formulae are calculated.
- Truth table elaborates all possible truth values of a formula.

The meanings of the logical operators are given by the following truth table.

P	Q	~P	$P \wedge Q$	P V Q		$P \rightarrow Q$	$P \leftrightarrow Q$
T	T	F	T	T	T	T	
T	F	F	F	T	F	F	
F	T	T	F	T	T	F	
F	F	Т	F	F	Т	Т	

1.4. Equivalence Laws:

Commutation

1.
$$P \wedge Q$$
 \cong $Q \wedge P$
2. $P \vee Q$ \cong $Q \vee P$

Association

1.
$$P \Lambda (Q \Lambda R) \cong (P \Lambda Q) \Lambda R$$

2.
$$P V (Q V R) \cong (P V Q) V R$$

Double Negation

$$\sim (\sim P)$$
 \cong P

Distributive Laws

1.
$$P \Lambda (Q V R) \cong$$

$$(P \land Q) \lor (P \land R)$$

2.
$$PV(Q\Lambda R) \cong$$

$$(P V Q) \Lambda (P V R)$$

De Morgan's Laws

1.
$$\sim (P \Lambda Q)$$

2.
$$\sim (P V Q)$$

$$\sim P \Lambda \sim Q$$

Law of Excluded Middle

$$P V \sim P$$

≅

Law of Contradiction

$$P \Lambda \sim P$$

 \cong

2. Propositional Logic – PL

- PL deals with
 - the validity, satisfiability and unsatisfiability of a formula
 - derivation of a new formula using equivalence laws.
- Each row of a truth table for a given formula is called its **interpretation** under which a formula can be true or false.
- A formula α is called **tautology** if and only
 - if α is true for all interpretations.
- A formula α is also called **valid** if and only if
 - it is a tautology.
- Let α be a formula and if there exist at least one interpretation for which α is true,
 - then α is said to be **consistent** (satisfiable) i.e., if \exists a model for α , then α is said to be consistent.
- A formula α is said to be inconsistent (unsatisfiable), if and only if
 - $-\alpha$ is always false under all interpretations.

- We can translate
 - simple declarative and

conditional (if .. then) natural language sentences into its corresponding propositional formulae.

Example

- Show that "It is humid today and if it is humid then it will rain so it will rain today" is a valid argument.
- **Solution:** Let us symbolize English sentences by propositional atoms as follows:

A : It is humid

B : It will rain

• Formula corresponding to a text:

$$\alpha: ((A \rightarrow B) \land A) \rightarrow B$$

• Using truth table approach, one can see that α is true under all four interpretations and hence is valid argument.

Truth Table for $((A \rightarrow B) \land A) \rightarrow B$							
A	В	$A \to B = X$	$X \wedge A = Y$	$Y \rightarrow B$			
Т	Т	Т	Т	Т			
T	F	F	F	Т			
F	Т	Т	F	Т			
F	F	Т	F	Т			

- Truth table method for problem solving is
 - simple and straightforward and
 - very good at presenting a survey of all the truth possibilities in a given situation.
- It is an easy method to evaluate

- a consistency, inconsistency or validity of a formula, but the size of truth table grows exponentially.
- Truth table method is good for small values of n.
- For example, if a formula contains n atoms, then the truth table will contain 2ⁿ entries.
 - A formula $\alpha : (P \land Q \land R) \rightarrow (Q \lor S)$ is **valid** can be proved using truth table.
 - A table of 16 rows is constructed and the truth values of α are computed.
 - Since the truth value of α is true under all 16 interpretations, it is valid.
- It is noticed that if P \wedge Q \wedge R is false, then α is true because of the definition of \rightarrow .
- Since P Λ Q Λ R is false for 14 entries out of 16, we are left only with two entries to be tested for which α is true.
 - So in order to prove the validity of a formula, all the entries in the truth table may not be relevant.
- Other methods which are concerned with proofs and deductions of logical formula are as follows:
 - Natural Deductive System
 - Axiomatic System
 - Semantic Tableaux Method
 - Resolution Refutation Method

3. Natural deduction method – ND

- ND is based on the set of few deductive inference rules.
- The name natural deductive system is given because it mimics the pattern of natural reasoning.
- It has about 10 deductive inference rules.

Conventions:

- E for Elimination.
- P, P_k , $(1 \le k \le n)$ are atoms.

- α_k , $(1 \le k \le n)$ and β are formulae.

Natural Deduction Rules:

Rule 1: I- Λ (Introducing Λ)

I-
$$\Lambda$$
: If $P_1, P_2, ..., P_n$ then $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$

Interpretation: If we have hypothesized or proved $P_1, P_2, ...$ and P_n , then their conjunction $P_1 \wedge P_2 \wedge ... \wedge P_n$ is also proved or derived.

Rule 2: E- Λ (Eliminating Λ)

E-
$$\Lambda$$
: If $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$ then P_i ($1 \le i \le n$)

Interpretation: If we have proved $P_1 \wedge P_2 \wedge ... \wedge P_n$, then any P_i is also proved or derived. This rule shows that Λ can be eliminated to yield one of its conjuncts.

Rule 3: I-V (Introducing V)

I-V: If
$$P_i$$
 ($1 \le i \le n$) then $P_1 V P_2 V ... V P_n$

Interpretation: If any Pi $(1 \le i \le n)$ is proved, then $P_1V \dots V P_n$ is also proved.

Rule 4: E-V (Eliminating V)

E-V: If
$$P_1 V \dots V P_n, P_1 \rightarrow P, \dots, P_n \rightarrow P$$
 then P

Interpretation: If $P_1 \vee ... \vee P_n$, $P_1 \rightarrow P$, ..., and $P_n \rightarrow P$ are proved, then P is proved.

Rule 5: I- \rightarrow (Introducing \rightarrow)

I-
$$\rightarrow$$
 : If from $\alpha_1, ..., \alpha_n$ infer β is proved then $\alpha_1 \wedge ... \wedge \alpha_n \rightarrow \beta$ is proved

Interpretation: If given α_1 , α_2 , ...and α_n to be proved and from these we deduce β then $\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \rightarrow \beta$ is also proved.

Rule 6: E- \rightarrow (Eliminating \rightarrow) - Modus Ponen

$$E-\rightarrow : If P_1 \rightarrow P, P_1 then P$$

Rule 7: I- \leftrightarrow (Introducing \leftrightarrow)

$$I \rightarrow : If P_1 \rightarrow P_2, P_2 \rightarrow P_1 then P_1 \leftrightarrow P_2$$

Rule 8: $E \rightarrow (Elimination \leftrightarrow)$

$$E \rightarrow : If P_1 \leftrightarrow P_2 \text{ then } P_1 \rightarrow P_2, P_2 \rightarrow P_1$$

Rule 9: I-~ (Introducing~)

I- ~: If from P infer $P_1 \land \sim P_1$ is proved then $\sim P$ is proved

Rule 10: E-~ (Eliminating~)

E- ~: If from ~ P infer $P_1 \land \sim P_1$ is proved then P is proved

- If a formula β is derived / proved from a set of premises / hypotheses { $\alpha_1,...,\alpha_n$ },
 - then one can write it as from $\alpha_1, ..., \alpha_n$ infer β .
- In natural deductive system,
 - a theorem to be proved should have a form from $\alpha 1, ..., \alpha n$ infer β .
- Theorem **infer** β means that
 - there are no premises and β is true under all interpretations i.e., β is a tautology or valid.
- If we assume that α → β is a premise, then we conclude that β is proved if α is given
 i.e.,
 - if 'from α infer β ' is a theorem then $\alpha \to \beta$ is concluded.
 - The converse of this is also true.

Deduction Theorem: To prove a formula $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n \rightarrow \beta$, it is sufficient to prove a theorem from $\alpha_1, \alpha_2, \ldots, \alpha_n$ infer β .

Example1: Prove that PA(QVR) follows from PAQ

Solution: This problem is restated in natural deductive system as "**from P** Λ **Q infer P** Λ (**Q V R**)". The formal proof is given as follows:

$\{Theorem\} \quad \text{ from } P \ \Lambda Q \ infer \ P \ \Lambda \ (Q \ V \ R)$

{ premise}	РΛQ	(1)
$\{E-\Lambda,(1)\}$	P	(2)
$\{E-\Lambda,(1)\}$	Q	(3)

$$\{ I-V, (3) \}$$
 Q V R (4)

$$\{ I-\Lambda, (2,4) \}$$
 $P \Lambda (Q V R)$ Conclusion

Example2: Prove the following theorem:

infer
$$((Q \rightarrow P) \land (Q \rightarrow R)) \rightarrow (Q \rightarrow (P \land R))$$

Solution:

- In order to prove **infer** $((Q \to P) \Lambda(Q \to R)) \to (Q \to (P \Lambda R))$, prove a theorem **from** $\{Q \to P, Q \to R\}$ **infer** $Q \to (P \Lambda R)$.
- Further, to prove $\mathbf{Q} \to (\mathbf{P} \land \mathbf{R})$, prove a sub theorem **from** \mathbf{Q} **infer** $\mathbf{P} \land \mathbf{R}$

{Theorem} from $Q \rightarrow P$, $Q \rightarrow R$ infer $Q \rightarrow (P \land R)$

{ premise 1}
$$Q \rightarrow P$$
 (1)
{ premise 2} $Q \rightarrow R$ (2)

{ sub theorem} from Q infer
$$P \Lambda R$$
 (3)

$$\{ premise \}$$
 Q (3.1)

$$\{E-\to, (1,3.1)\}$$
 P (3.2)

$$\{E \to , (2, 3.1)\}\$$
 R (3.3)

$$\{ I-\Lambda, (3.2,3.3) \}$$
 P Λ R (3.4)

$$\{ I- \rightarrow, (3) \}$$
 Q \rightarrow (P Λ R) Conclusion

4. Axiomatic System for Propositional Logic:

- It is based on the set of only three axioms and one rule of deduction.
 - It is minimal in structure but as powerful as the truth table and natural deduction approaches.
 - The proofs of the theorems are often difficult and require a guess in selection of appropriate axiom(s) and rules.
 - These methods basically require forward chaining strategy where we start with the given hypotheses and prove the goal.

Axiom1 (A1): $\alpha \rightarrow (\beta \rightarrow \alpha)$

Axiom2 (A2): $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$

Axiom3 (A3): $(\sim \alpha \rightarrow \sim \beta) \rightarrow (\beta \rightarrow \alpha)$

Modus Ponen (MP) defined as follows:

Hypotheses: $\alpha \rightarrow \beta$ and α *Consequent:* β

Examples: Establish the following:

1. $\{Q\} \mid -(P \rightarrow Q) \text{ i.e., } P \rightarrow Q \text{ is a deductive consequence of } \{Q\}.$

{Hypothesis} Q

(1)

{Axiom A1} $Q \rightarrow (P \rightarrow Q)$

(2)

 $\{MP, (1,2)\} \quad P \rightarrow Q$

proved

2. { $P \rightarrow Q$, $Q \rightarrow R$ } |- ($P \rightarrow R$) i.e., $P \rightarrow R$ is a deductive consequence of { $P \rightarrow Q$, $Q \rightarrow R$ }.

{Hypothesis} $P \rightarrow Q$

(1)

{Hypothesis} $Q \rightarrow R$

(2)

{Axiom A1} $(Q \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R))$

(3)

 $\{MP, (2,3)\} P \rightarrow (Q \rightarrow R)$

(4)

{Axiom A2} $(P \rightarrow (Q \rightarrow R)) \rightarrow$

 $((P \to Q) \to (P \to R)) \tag{5}$

 $\{MP, (4,5)\}\ (P \rightarrow Q) \rightarrow (P \rightarrow R)$

(6)

 $\{MP, (1, 6)\}\ P \to R$

proved

4.1. Deduction Theorems in Axiomatic System

Deduction Theorem:

If Σ is a set of hypotheses and α and β are well-formed formulae , then $\{\Sigma \cup \alpha\} \mid -\beta$ implies $\Sigma \mid -(\alpha \to \beta)$.

Converse of deduction theorem:

Given
$$\Sigma \mid - (\alpha \to \beta)$$
, we can prove $\{ \Sigma \cup \alpha \} \mid -\beta$.

Useful Tips

1. Given α , we can easily prove $\beta \to \alpha$ for any well-formed formulae α and β .

2. Useful tip

If $\alpha \to \beta$ is to be proved, then include α in the set of hypotheses Σ and derive β from the set $\{\Sigma \cup \alpha\}$. Then using deduction theorem, we conclude $\alpha \to \beta$.

Example: Prove $\sim P \rightarrow (P \rightarrow Q)$ using deduction theorem.

Proof: Prove $\{\sim P\}$ |- $(P \to Q)$ and $|-\sim P \to (P \to Q)$ follows from deduction theorem.

5. Semantic Tableaux System in PL

- Earlier approaches require
 - construction of proof of a formula from given set of formulae and are called direct methods.

• In semantic tableaux,

- the set of rules are applied systematically on a formula or set of formulae to establish its consistency or inconsistency.
- Semantic tableau
- binary tree constructed by using semantic rules with a formula as a root
 - Assume α and β be any two formulae.

5.1. Semantic Tableaux Rules

Rule 1: A tableau for a formula $(\alpha \ \Lambda \ \beta)$ is constructed by adding both α and β to the same path (branch). This can be represented as follows: $\alpha \ \alpha \ \alpha \ \beta$

α Α β

Rule 2: A tableau for a formula $\sim (\alpha \ \Lambda \ \beta)$ is constructed by adding two alternative paths one containing $\sim \alpha$ and other containing $\sim \beta$.

~ (α Λ β) ~ α ~ ~ β

Rule 3: A tableau for a formula $(\alpha \ V \ \beta)$ is constructed by adding two new paths one containing α and other containing β .

α V β

Rule 4: A tableau for a formula $\sim (\alpha \ V \ \beta)$ is constructed by adding both $\sim \alpha$ and $\sim \beta$ to the same path. This can be expressed as follows:

~ α ~ β

Rule 5:

Rule 6:

Rule 7:

Rule 8:

α ~ α

~ α

 $\begin{array}{ccc} & \sim (\alpha \rightarrow \beta) \\ \alpha & \end{array}$

α ~ β

 $\alpha \leftrightarrow \beta \cong (\alpha \Lambda \beta) V (\sim \alpha \Lambda \sim \beta)$

 $\alpha \leftrightarrow \beta$ $\alpha \wedge \beta \sim \alpha \wedge \gamma \wedge \beta$

 $\alpha \rightarrow \beta$

Rule 9: $\sim (\alpha \leftrightarrow \beta) \cong (\alpha \land \sim \beta) \lor (\sim \alpha \land \beta)$

5.2. Consistency and Inconsistency

- If an atom P and ~ P appear on a same path of a semantic tableau,
 - then inconsistency is indicated and such path is said to be contradictory or closed (finished) path.
 - Even if one path remains **non contradictory** or **unclosed** (open), then the formula α at the root of a tableau is **consistent**.
- Contradictory tableau (or finished tableau):
 - It defined to be a tableau in which all the paths are contradictory or closed (finished).
- If a tableau for a formula α at the root is a contradictory tableau,
 - then a formula α is said to be inconsistent.
- Show that α: (Q Λ ~ R) Λ (R → P) is consistent and find its model.

{Tableau root} $(Q \Lambda \sim R) \Lambda (R \rightarrow P)$ (1)

{Apply rule 1 to 1} $(Q \Lambda \sim R)$ (2)

(R→P) (3)

{Apply rule 1 to 2} Q

{Apply rule 6 to 3} ~R

• $\{Q = T, R = F\}$ and $\{P = T, Q = T, R = F\}$ are models of α .

Show that $\alpha : (P \land Q \rightarrow R) \land (\sim P \rightarrow S) \land Q \land \sim R \land \sim S$ is inconsistent using tableaux method.

(Root)
$$(P \Lambda Q \to R) \Lambda (\sim P \to S) \Lambda Q \Lambda \sim R \Lambda \sim S$$
 (1)

{Apply rule 1 to 1}
$$P \Lambda Q \rightarrow R$$
 (2)

$$\sim P \rightarrow S$$
 (3)
Q $\sim R$
 $\sim S$

{Apply rule 6 to 3}
$$\sim \sim P = P$$

{Apply rule 6 to 2)}
$$\sim$$
 (P \wedge Q) R Closed { R, \sim R} \sim Closed {P, \sim P} Closed{Q, \sim Q} • α is inconsistent as we get contradictory tableau

 α is inconsistent as we get contradictory tableau.

6. Resolution Refutation in PL

- Resolution refutation: Another simple method to prove a formula by contradiction.
- Here negation of goal is added to given set of clauses.
 - If there is a refutation in new set using resolution principle then goal is proved
- During resolution we need to identify two clauses,
 - one with positive atom (P) and other with negative atom (~ P) for the application of resolution rule.
- Resolution is based on modus ponen inference rule.

6.1. Disjunctive & Conjunctive Normal Forms

- Disjunctive Normal Form (DNF): A formula in the form $(L_{11} \Lambda \Lambda L_{1n}) V V$ $(L_{m1} \Lambda \Lambda L_{mk})$, where all L_{ij} are literals.
 - Disjunctive Normal Form is disjunction of conjunctions.
- Conjunctive Normal Form (CNF): A formula in the form ($L_{11}\ V\\ V\ L_{1n}\)$ $\Lambda\$ $(L_{p1}\ V\\ V\ L_{pm})$, where all L_{ij} are literals.

- CNF is conjunction of disjunctions or
- CNF is conjunction of clauses
- *Clause:* It is a formula of the form (L₁V ... V L_m), where each L_k is a positive or negative atom.

6.2. Conversion of a Formula to its CNF

- Each PL formula can be converted into its equivalent CNF.
- Use following equivalence laws:

-
$$P \rightarrow Q \cong \sim P \ V \ Q$$

- $P \leftrightarrow Q \cong (P \rightarrow Q) \ \Lambda (Q \rightarrow P)$

Double Negation

$$- \sim P \cong P$$

• (De Morgan's law)

-
$$\sim (P \land Q) \cong \sim P \lor \sim Q$$

- $\sim (P \lor Q) \cong \sim P \land \sim Q$

(Distributive law)

$$P V (Q \Lambda R) \cong (P V Q) \Lambda (P V R)$$

6.3 Resolvent of Clauses

- If two clauses C_1 and C_2 contain a complementary pair of literals $\{L, \sim L\}$,
 - then these clauses may be resolved together by deleting L from C₁ and ~ L from C₂ and constructing a new clause by the disjunction of the remaining literals in C₁ and C₂.
- The new clause thus generated is called **resolvent** of C_1 and C_2 .
 - Here C1 and C2 are called parents of resolved clause.
- Inverted binary tree is generated with the last node (root) of the binary tree to be a resolvent.

This is also called resolution tree.

Find resolvent of the following clauses:

Inverted Resolution Tree

Resolvent(C1,C2, C3) = P V R

6.4 Logical Consequence

- **Theorem1**: If C is a resolvent of two clauses C_1 and C_2 , then C is a *logical consequence* of $\{C_1, C_2\}$.
 - A deduction of an empty clause (or resolvent as contradiction) from a set S of clauses is called a *resolution refutation* of S.
- Theorem2: Let S be a set of clauses. A clause C is a *logical consequence* of S iff the set $S'=S \cup \{\sim C\}$ is *unsatisfiable*.
 - In other words, C is a logical consequence of a given set S iff an empty clause is deduced from the set S'.

- Show that C V D is a logical consequence of
 - S ={AVB, ~ AVD, C V~ B} using resolution refutation principle.
- First we will add negation of logical consequence
 - i.e., \sim (C V D) \cong \sim C Λ \sim D to the set S.
 - Get S' = {A V B, ~ A V D, C V~ B, ~C, ~D}.
- Now show that S' is unsatisfiable by deriving contradiction using resolution principle.

